skip to main content


Search for: All records

Creators/Authors contains: "Rosenblum, Erica B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    An organism's gut microbiota can change in response to novel environmental conditions, in particular when colonisation of new habitats is accompanied by shifts in the host species' ecology. Here, we investigated the gut microbiota of three lizard species (A. inornata,H. maculataandS. cowlesi) from their ancestral‐like habitat in the Chihuahuan desert and two colonised habitats with contrasting geological and ecological compositions: the White Sands and Carrizozo lava flow. The host species and the lizards' environment both shape gut microbiota composition, but host effects were overall stronger. Further, we found evidence that colonisation of the same environment by independent host species led to parallel changes of the gut microbiota, whereas the colonisation of two distinct environments by the same host species led to gut microbiota divergence. Some of the gut microbiota changes that accompanied the colonisation of the White Sands were associated with shifts in diet (based on diet information from previous studies), which is congruent with the general observation that trophic ecology has a strong effect on gut microbiota composition. Our study provides insights into how shifts in host ecology accompanying colonisation of novel environments can affect gut microbiota composition and diversity.

     
    more » « less
  2. The fungal pathogen Batrachochytrium dendrobatidis ( Bd ) is implicated in global mass die-offs and declines in amphibians. In Mesoamerica, the Bd epidemic wave hypothesis is supported by detection of Bd in historic museum specimens collected over the last century, yet the timing and impact of the early stages of the wave remain poorly understood. Chiropterotriton magnipes , the only obligate troglodytic Neotropical salamander, was abundant in its small range in the decade following its description in 1965, but subsequently disappeared from known localities and was not seen for 34 years. Its decline is roughly coincident with that of other populations of Neotropical salamanders associated with the invasion and spread of Bd . To determine the presence and infection intensity of Bd on C. magnipes and sympatric amphibian species (which are also Bd hosts), we used a noninvasive sampling technique and qPCR assay to detect Bd on museum specimens of C. magnipes collected from 1952 to 2012, and from extant populations of C. magnipes and sympatric species of amphibians. We also tested for the presence of the recently discovered Batrachochytrium salamandivorans ( Bsal ), another fungal chytridiomycete pathogen of salamanders, using a similar technique specific for Bsal . We did not detect Bd in populations of C. magnipes before 1969, while Bd was detected at low to moderate prevalence just prior to and during declines. This pattern is consistent with Bd -caused epizootics followed by host declines and extirpations described in other hosts. We did not detect Bsal in any extant population of C. magnipes . We obtained one of the earliest positive records of the fungus to date in Latin America, providing additional historical evidence consistent with the Bd epidemic wave hypothesis. Genotyping results show that at least one population is currently infected with the Global Panzootic Lineage of Bd , but our genotyping of the historical positive samples was unsuccessful. The lack of large samples from some years and the difficulty in genotyping historical Bd samples illustrate some of the difficulties inherent in assigning causality to historical amphibian declines. These data also provide an important historical baseline for actions to preserve the few known remaining populations of C. magnipes . 
    more » « less